
Possible changes to art

Kyle J. Knoepfel
8 March 2018

• art provides SAM metadata storage within the art/ROOT file.
• art provides the key-value entries; users are able to add additional key-value pairs.
• The data is extracted via sam_metadata_dumper, the output of which can be

used when interacting with SAM.
• Recent issue report:

SAM metadata

3/8/18 K. J. Knoepfel | art stakeholders meeting2

• art provides SAM metadata storage within the art/ROOT file.
• art provides the key-value entries; users are able to add additional key-value pairs.
• The data is extracted via sam_metadata_dumper, the output of which can be

used when interacting with SAM.
• Recent issue report:

• Stored SAM metadata was not necessarily meant to be mapped directly to what
SAM requires.

• However, since its purpose is to provide easier interactions with SAM for art jobs,
we are willing to adjust what we store to make it easier.

SAM metadata

3/8/18 K. J. Knoepfel | art stakeholders meeting3

• A proposal:
– Make art’s stored SAM metadata align with SAM’s specifications. art-specific keys and

values will be stored in an “art” table.

– For example, the supplied first_event and last_event values are integers according
to SAM.
• According to art, an event is uniquely specified as a triplet of run, subrun, and event

numbers.
• To avoid this conflict, the top-level first_event and last_event values will reflect the

SAM requirement, and
• Additional art.first_event and art.last_event values will be provided that reflect the
art semantics.

SAM metadata

3/8/18 K. J. Knoepfel | art stakeholders meeting4

• A proposal:
– Make art’s stored SAM metadata align with SAM’s specifications. art-specific keys and

values will be stored in an “art” table.

• Consequences of changing the schema:
– Either sam_metadata_dumper will need to provide a translation from the old schema to

the new one, or users will need to do so, or both.

• Thoughts?

SAM metadata

3/8/18 K. J. Knoepfel | art stakeholders meeting5

• Assume a product exists in the input file and has not yet been read into memory:

art::Event::get

3/8/18 K. J. Knoepfel | art stakeholders meeting6

Handle<int> h;
e.get(product_id, h);
assert(h.isValid()); // fails

• Assume a product exists in the input file and has not yet been read into memory:

art::Event::get

3/8/18 K. J. Knoepfel | art stakeholders meeting7

Handle<int> h;
e.get(product_id, h);
assert(h.isValid()); // fails

Handle<int> h;
e.getByLabel(product_id, h);
assert(h.isValid()); // succeeds
e.get(product_id, h);
assert(h.isValid()); // succeeds

• Assume a product exists in the input file and has not yet been read into memory:

• Calling art::Event::get fills the handle if the product has already been read
into memory. Otherwise, the handle remains invalid. This is not documented.

• Using art::Event::get is almost never the right thing to do. In fact, we would
like to remove it if possible.

• One use case—a persisted reference to a data product is desired, but it is not an
element in a container (i.e. art::Ptr<T> doesn’t apply).
– Solution: feature request for art to support persistable references to data products

art::Event::get

3/8/18 K. J. Knoepfel | art stakeholders meeting8

Handle<int> h;
e.get(product_id, h);
assert(h.isValid()); // fails

Handle<int> h;
e.getByLabel(product_id, h);
assert(h.isValid()); // succeeds
e.get(product_id, h);
assert(h.isValid()); // succeeds

• Assume a product exists in the input file and has not yet been read into memory:

• Calling art::Event::get fills the handle if the product has already been read
into memory. Otherwise, the handle remains invalid. This is not documented.

• Using art::Event::get is almost never the right thing to do. In fact, we would
like to remove it if possible.

• One use case—a persisted reference to a data product is desired, but it is not an
element in a container (i.e. art::Ptr<T> doesn’t apply).
– Solution: feature request for art to support persistable references to data products

art::Event::get

3/8/18 K. J. Knoepfel | art stakeholders meeting9

Handle<int> h;
e.get(product_id, h);
assert(h.isValid()); // fails

Handle<int> h;
e.getByLabel(product_id, h);
assert(h.isValid()); // succeeds
e.get(product_id, h);
assert(h.isValid()); // succeeds

Homework: does your experiment use
art::Event::get, and if so, why?

• There is a complaint that the severity of the logged messages indicating the
opening and closing of a file is too high.

• The request is to reduce the severity to the info level.
– The consequence is that these messages could be suppressed if the destinations are

configured with a threshold higher than INFO.

• Any concerns about this?

Reducing severity of logged messages for open/close file

K. J. Knoepfel | art stakeholders meeting

